Theoretical Foundations *********************** Architecture Overview ********************* OJU is built on a modular architecture that separates concerns between different components: 1. **Agent Core**: The central component that handles the execution flow 2. **Provider Interface**: Abstract layer for different LLM providers 3. **Prompt Management**: System for organizing and retrieving prompts 4. **Concurrency Layer**: Manages parallel execution of multiple agents Design Principles ***************** 1. **Extensibility** - Provider-agnostic design allows adding new LLM providers with minimal code changes - Plugin architecture for custom components 2. **Performance** - Asynchronous I/O for non-blocking operations - Parallel execution of independent agents - Connection pooling and request batching 3. **Usability** - Intuitive API design - Comprehensive error handling - Detailed logging and monitoring Agent System Architecture ************************* .. code-block:: text :caption: Agent System Architecture +------------------+ +-----------------+ +-----------------+ | User | | Agent Manager | | Agent 1 | | Application |---->| |---->| Agent 2 | +------------------+ +--------+--------+ | ... | | | Agent N | | +--------+--------+ | | v v +------------------+ +-----------------+ +--------+--------+ | OpenAI | | Provider |<-----+ Provider | | Anthropic |<----| Interface | | Interface | | Google Gemini | | |<--+ | | +------------------+ +-----------------+ | +--------------+ | | +--------------+ +---| Provider | | Interface | +--------------+ Concurrency Model ***************** OJU employs a hybrid concurrency model: 1. **Thread-based Parallelism** - Each agent runs in its own thread - I/O-bound operations are non-blocking - Thread pool for managing worker threads 2. **Asynchronous Execution** - Async/await pattern for I/O operations - Event loop for managing concurrent tasks - Backpressure handling for rate limiting Prompt Engineering ****************** OJU implements several prompt engineering best practices: 1. **Templating System** - Reusable prompt templates - Variable substitution - Conditional logic in prompts 2. **Context Management** - Conversation history tracking - Token window management - Context summarization for long conversations 3. **Response Formatting** - Structured output generation - JSON schema validation - Streaming responses Security Considerations *********************** 1. **Data Protection** - API key management - Secure credential storage - Request encryption 2. **Rate Limiting** - Request throttling - Exponential backoff - Circuit breaker pattern 3. **Compliance** - Data retention policies - Logging and audit trails - Privacy controls Performance Optimization ************************ 1. **Caching Layer** - Response caching - Embedding caching - Vector similarity search 2. **Batch Processing** - Request batching - Parallel processing - Pipeline optimization 3. **Resource Management** - Connection pooling - Memory management - Garbage collection Future Directions ***************** 1. **Advanced Features** - Multi-agent collaboration - Reinforcement learning from human feedback (RLHF) - Fine-tuning support 2. **Scalability** - Distributed execution - Load balancing - Auto-scaling 3. **Extensibility** - Custom provider plugins - Third-party integrations - Community contributions